Bioinformatics is about searching biological databases, comparing sequences, looking at protein structures, and more generally, asking biological questions with a computer. Bioinformatics is now at the center of the most recent developments in biology, such as the deciphering of the human genome, the biotechnologies, new legal and forensic techniques, as well as the medicine of the future. You don't need to install complicated programs on your computer to become familiar with the techniques; many tools for bioinformatics can be run over the Internet via your Internet browser. This lab will introduce to you to the wonderful world of bioinformatics.

1a. MANUAL GENE FINDING: We'll do this together.
1b. MANUAL GENE FINDING: Do on your own. Part 1 of your lab report will consist of answers to the questions in section 1 b .
We'll view together: BASICS OF BLAST .PPT
2. Your mitochondrial DNA analysis: Summarize your findings for part 4 of your lab report.
3. Bioinformatics "MUTANT-X": ANALYZE A DISEASE-CAUSING GENE: [Instructions in

BIOINFORMATICS_MUTANT file; sequences in BIOINFORMATICS_SEQUENCES file].
You will receive the sequence for a gene or protein that seems to be involved in some human disease. You need to compare this sequence to all known human sequences to identify the gene, and then locate the mutation that seems to be responsible for the disease.
Part 5 of your lab report should be answers to the questions on these sheets, relating to your assigned gene.
4. Flu: We'll do this together. Summarize your findings for part 4 of your lab report.
5. HIV exercise. Do on your own. Part 5 of your lab report will consist of answers to the questions in section 5 .

1a: Manual gene finding:
 Find a Gene Using Protein Evidence

WHAT DOES A EUKARYOTIC GENE LOOK LIKE?

Attached is a page with the sequence for a protein (142 amino acids) and a set of 3 pages with DNA sequence (1,200 nucleotides). The DNA sequence contains the gene for the protein on the first page. Feel free to separate the pages.

Underneath the DNA sequence is a translation of this sequence in all three reading frames, RF1 through RF3. The symbol * denotes stop codons in the DNA (check it out, stop codons are either TAA, TAG, or TGA).

Your task is to identify the gene in the DNA sequence by finding within the translated amino acid sequence amino acid stretches that match the sequence of the protein on the first page.

Identify the protein coding region within the translated protein sequence. Highlight the translated amino acid sequences which match the amino acid sequence of the protein. Then highlight the PRECISE DNA portions that encode the highlighted amino acid sequence. You'll need the codon
table, and need to identify each intron, to the exact base pair.
NOTE: nearly all introns start with GU, and end with AG.
Answer the questions below. As always, you are encouraged to work together, but you must write out your answers on your own. [You will NOT turn these in]

1. A. What are the sequence stretches that contain coding sequences called?
B. How many are in this gene?
2. A. What are the sequence stretches in between the coding sequences called?
B. How many are in this gene?
3. List the exact nucleotide at which each exon begins, and ends.
4. a. Do all exons begin with start codons? Why?
b. Do all exons end with stop codons? Why?
5. a. Can CODING SEQUENCE "jump" reading frames within a gene? Why?

01 MVLSPADKTNVKAAWGKVGAHAGEYGAEALERFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNA 070
071 VAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR 142

Genic 2, forward sequence and translation in all three reading frames; M denotes potential start codons; * stop codons

1 ATGCCCCCGGGCGAGCGGGATGGGCGGGAGTGGAGTGGCGGGTGGAGGGTGGAGACGTCC 60

$$
\begin{aligned}
& \begin{array}{lllllllllllllllllllll}
W & P & P & P & R & V & H & P & Q & G & R & P & S & P & P & P & G & P & A & Q & F 1
\end{array}
\end{aligned}
$$

61 TGGCCCCCGCCCCGCGTGCACCCCCAGGGGAGGCCGAGCCCGCCGCCCGGCCCCGCGCAG 120

121 GCCCCGCCCGGGACTCCCCTGCGGTCCAGGCCGCGCCCCGGGCTCCGCGCCAGCCAATGA 180

$\begin{array}{lllllllllllllllllllll}R & R & P & A & G & R & A & A & P & Q & A & * & T & L & A & R & S & R & P & F 2\end{array}$ $\begin{array}{llllllllllllllllllllll}A & A & R & P & G & V & P & P & R & P & K & H & K & P & W & R & A & R & G & P & F 3\end{array}$
181 GCGCCGCCCGGCCGGGCGTGCCCCCGCGCCCCAAGCATAAACCCTGGCGCGCTCGCGGCC 240

 $\begin{array}{lllllllllllllllllllll}A & L & F & W & S & P & Q & T & Q & R & E & P & T & M & V & L & S & P & A & D & F 3\end{array}$
241 CGGCACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCG 300

301 ACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTG 360

$\begin{array}{llllllllllllllllllllll}R & R & P & W & R & G & E & A & P & S & P & A & P & T & R & A & P & R & P & P & F 1\end{array}$ $\begin{array}{llllllllllllllllllllll}\mathrm{G} & \mathrm{G} & \mathrm{P} & \mathrm{G} & \mathrm{E} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{L} & \mathrm{L} & \mathrm{R} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{R} & \mathrm{P} & \mathrm{F} 2\end{array}$ E A $\quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{R} \quad * \quad \mathrm{G} \quad \mathrm{S}$
361 CGGAGGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCC 420

$\begin{array}{lllllllllllllllllllll}G & P & T & G & H & P & Q & P & S & W & P & R & T & Q & T & P & P & L & T & L & F 1\end{array}$ $\begin{array}{lllllllllllllllllllll}\mathrm{D} & \mathrm{P} & \mathrm{Q} & \mathrm{A} & \mathrm{T} & \mathrm{L} & \mathrm{N} & \mathrm{R} & \mathrm{P} & \mathrm{G} & \mathrm{P} & \mathrm{G} & \mathrm{P} & \mathrm{K} & \mathrm{P} & \mathrm{H} & \mathrm{P} & \mathrm{S} & \mathrm{L} & \mathrm{C} & \mathrm{F} 2\end{array}$ T $\begin{array}{llllllllllllllllllll}\text { H } & \mathrm{R} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{T} & \mathrm{V} & \mathrm{L} & \mathrm{A} & \mathrm{P} & \mathrm{D} & \mathrm{P} & \mathrm{N} & \mathrm{P} & \mathrm{T} & \mathrm{P} & \mathrm{H} & \mathrm{S} & \mathrm{A} & \mathrm{F} 3\end{array}$
421 GGACCCACAGGCCACCCTCAACCGTCCTGGCCCCGGACCCAAACCCCACCCCTCACTCTG 480

481 СтTстССССGCAGGAGGTTCCTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCG 540
----:----|----:----|----:----|----:----|----:----------------|

$\begin{array}{lllllllllllllllllllll}L & S & H & G & S & A & Q & V & K & G & H & G & K & K & V & A & D & A & L & T & F 3\end{array}$
541 ACCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGA 600

 $\begin{array}{llllllllllllllllllllll}\mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{A} & \mathrm{H} & \mathrm{V} & \mathrm{D} & \mathrm{D} & \mathrm{M} & \mathrm{P} & \mathrm{N} & \mathrm{A} & \mathrm{L} & \mathrm{S} & \mathrm{A} & \mathrm{L} & \mathrm{S} & \mathrm{D} & \mathrm{L} & \mathrm{H} & \mathrm{F} 3\end{array}$
601 CCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGC 660

$T \quad R \quad T \quad S \quad F \quad G \quad W \quad T \quad R \quad S \quad T \quad S \quad R \quad * \quad A \quad A \quad G \quad R \quad E \quad R \quad E 1$ $\begin{array}{llllllllllllllllllll}R & A & Q & S & G & G & \mathrm{C} & \mathrm{L} & \mathrm{L} & \mathrm{Q} & \mathrm{G} & \mathrm{E} & \mathrm{R} & \mathrm{R} & \mathrm{A} & \mathrm{G} & \mathrm{S} & \mathrm{D} & \mathrm{F} 2\end{array}$

661 ACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGAGCGA 720

$\begin{array}{lllllllllllllllllllll}S & G & S & R & G & E & M & A & P & S & S & Q & G & R & G & S & R & G & L & R & F 1\end{array}$ $\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{G} & \mathrm{R} & \mathrm{G} & \mathrm{A} & \mathrm{R} & \mathrm{W} & \mathrm{R} & \mathrm{L} & \mathrm{P} & \mathrm{R} & \mathrm{R} & \mathrm{A} & \mathrm{E} & \mathrm{D} & \mathrm{H} & \mathrm{A} & \mathrm{G} & \mathrm{C} & \mathrm{G} & \mathrm{F} 2\end{array}$

721 TCTGGGTCGAGGGGCGAGATGGCGCCTTCCTCGCAGGGCAGAGGATCACGCGGGTTGCGG 780

 $\begin{array}{lllllllllllllllllllll}R & C & S & A & G & G & G & C & G & P & G & P & S & A & P & L & T & L & F & S & F 2\end{array}$

781 GAGGTGTAGCGCAGGCGGCGGCTGCGGGCCTGGGCCCTCGGCCCCACTGACCCTCTTCTC 840

841 TGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTT 900

901 CACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGAC 960

 $\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{N} & \mathrm{T} & \mathrm{V} & \mathrm{K} & \mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{R} & \mathrm{W} & \mathrm{P} & \mathrm{C} & \mathrm{F} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{G} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{F} 3\end{array}$
961 CTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCC 1020

1021 CCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTG 1080

 $\begin{array}{llllllllllllllllllllll}A & A & A & C & V & C & L & S & F & F & P & Q & Q & T & C & Q & A & W & A & W & F 2\end{array}$

1081 GGCGGCAGCCTGTGTGTGCCTGAGTTTTTTCCCTCAGCAAACGTGCCAGGCATGGGCGTG 1140

1141 GACAGCAGCTGGGACACACATGGCTAGAACCTCTCTGCAGCTGGATAGGGTAGGAAAAGG 1200

1B: GENE FINDING, USING PROTEIN EVIDENCE, WITH COMPUTER TOOLS:
You'll turn in answers to the questions on this one, as part 1 of your lab report.
Below you' Il find the sequence of a protein (142 amino acids) and a DNA sequence (1,700 nucleotides). The DNA sequence contains the gene for the protein.

Use the tool called " Six Pack" to get a predicted translation for the DNA sequence, in all three reading frames. http://gander.wustl.edu/cgi-bin/emboss/sixpack The only parameter you should change would be: Set " Display translation of reverse sense?" To " No" . Once you have got your translation in all three frames, print that part out, OR copy it to a file.

The symbol * denotes stop codons in the DNA (check it out, stop codons are either TAA, TAG, or TGA).

Your task is to identify the gene in the DNA sequence by finding within the translated amino acid sequence amino acid stretches that match the sequence of the protein on the first page. You can do this manually, OR use another tool: BLAST2SEQ. Do a Google search for BLAST2SEQ. Bring this tool up. There are many types of blast: Blastn will search a nucleotide sequence with another nucleotide sequence. Blastp will search a protein sequence with another protein sequence. Tblastn will TRANSLATE a nucleotide sequence, in all 6 possible reading frames, and then search that for a protein sequence. That' s what we want here. So click on " Tblastn"

Paste the nucleotide sequence into the " SUBJECT" box, and the protein sequence into the " QUERY" box. Properly formatted DNA sequences always start with a comment line, that must begin with a " >" , that for instance describes the name of the sequence. For instance:
$>$ Unknown DNA sequence for translation.

Click " Blast" . Use the alignments found to help you find the start and stop points to the exons. On your " sixpack" display. Remember, you need to check all splice junctions, to highlight the PRECISE DNA portions that encode the highlighted amino acid sequence.

Answer the questions below. As always, you are encouraged to work together, but you must write out your answers on your own.
I-1 A. What are the sequence stretches that contain coding sequences called?
B. How many are in this gene?

I-2. A. What are the sequence stretches in between the coding sequences called?
B. How many are in this gene?

I-3: Make a list of the exact nucleotide locations of the start of each exon, and the end of each exon. Also, include the location of the stop codon.
I-4. a. Do all exons begin with start codons? Why?
b. Do all exons end with stop codons? Why?

I-5. a. Can CODING SEQUENCE " jump" reading frames within a gene? Why?
I-6. What do you think the identity of this gene is? [You may have to wait until you learn to use BLASTp before answering this]

PROTEIN SEQUENCE:

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

DNA SEQUENCE:

Accattggtaaaaatatatataattttctatttttatttatactgactggccaaggctac acatttgcttctgacacaactgtgttcactagcaacctcaaacagacaccatggtgcatc tgactcctgaggagaagtctgccgttactgccctgtggggcaaggtgaacgtggatgaag ttggtggtgaggccctgggcaggttggtatcaaggttacaagacaggtttaaggagacca atagaaactgggcatgtggagacagagaagactcttgggtttctgataggcactgactct ctctgcctattggtctattttcccacccttaggctgctggtggtctacccttggacccag aggttctttgagtcctttggggatctgtccactcctgatgctgttatgggcaaccctaag gtgaaggctcatggcaagaaagtgctcggtgcctttagtgatggcctggctcacctggac aacctcaagggcacctttgccacactgagtgagctgcactgtgacaagctgcacgtggat cctgagaacttcagggtgagtctatgggacgcttgatgttttctttccccttcttttcta tggttaagttcatgtcataggaaggggataagtaacagggtacagtttagaatgggaaac agacgaatgattgcatcagtgtggaagtctcaggatcgttttagtttcttttatttgctg ttcataacaattgttttcttttgtttaattcttgctttctttttttttcttctccgcaat ttttactattatacttaatgccttaacattgtgtataacaaaaggaaatatctctgagat acattaagtaacttaaaaaaaaactttacacagtctgcctagtacattactatttggaat atatgtgtgcttatttgcatattcataatctccctactttattttcttttatttttaatt gatacataatcattatacatatttatgggttaaagtgtaatgttttaatatgtgtacaca tattgaccaaatcagggtaattttgcatttgtaattttaaaaaatgctttcttcttttaa tatacttttttgtttatcttatttctaatactttccctaatctctttctttcagggcaat aatgatacaatgtatcatgcctctttgcaccattctaaagaataacagtgataatttctg ggttaaggcaatagcaatatctctgcatataaatatttctgcatataaattgtaactgat gtaagaggtttcatattgctaatagcagctacaatccagctaccattctgcttttatttt atggttgggataaggctggattattctgagtccaagctaggcccttttgctaatcatgtt catacctcttatcttcctcccacagctcctgggcaacgtgctggtctgtgtgctggccca tcactttggcaaagaattcaccccaccagtgcaggctgcctatcagaaagtggtggctgg tgtggctaatgccctggcccacaagtatcactaagctcgctttcttgctgtccaatttct attaaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggcc ttgagcatctggattctgcctaataaaaacatttattttcattgc

PART 2: ANALYSIS OF YOUR MITOCHONDRIAL DNA SEQUENCE

1. Align the sequences of everyone in the class with CLUSTALW.
2. Align your sequence with the mitochondrial DNA standard sequence NC_012920, using BLAST2SEQ. Note the positions and sequences of all of your differences.
3. Compare your sequence with those of populations throughout the world: http://www.bioservers.org/bioserver/index1.html
4. Once you have compared your sequence to the "standard", determine your likely "haplogroup": The mtDNAmanager: http://mtmanager.yonsei.ac.kr/index.php [Read about it first at http://www.biomedcentral.com/1471-2105/9/483]

PART 3: MUTATION ANALYSIS:

GENE MUTATION EXERCISE: - a bioinformatics exercise for undergraduate biology science students

Robert Moss, Wofford College, Spartanburg, South Carolina

Melissa Rowland-Goldsmith, Chapman University, Orange, CA
Leena Sawant, Houston Community College, Houston, Texas
Michael Fahy, Chapman University, Chapman University, Orange, CA

1. Project abstract

Bioinformatics is about searching biological databases, comparing sequences, looking at protein structures, and more generally, asking biological questions with a computer. Bioinformatics is now at the center of the most recent developments in biology, such as the deciphering of the human genome, the biotechnologies, new legal and forensic techniques, as well as the medicine of the future. You don't need to install complicated programs on your computer to become familiar with the techniques; many tools for bioinformatics can be run over the Internet via your Internet browser. This lab will introduce to you to the wonderful world of bioinformatics and will specifically focus on 3 widely used bioinformatics tools.

Learning objectives:

At the end of this interactive exercise, students should feel comfortable navigating in the NCBI website. They should know how to do BLAST searches and find relevant information from such a search. They should know how to navigate ENTREZ and use that site to learn many important features about their gene/ protein sequence. Lastly, they should competent using OMIM to find important information about how a mutated gene can lead to a disease.

1. You will be assigned a gene number. You will find a corresponding gene or protein sequence in a common file your computer can access. Open the file and then copy the corresponding sequence to the clipboard. These sequences are mutated gene sequences, found in patients with particular diseases. You'll first need to find out what the normal gene is, and the nature of the mutation in this patient.

Demo these procedures with:

CTTAGCGGTAGCCCCTTGGTTTCCGTGGCAACGGAAAAGCGCGGGAATTACAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTCGCTGAGACTTCCTGG ACGGGGGACAGGCTGTGGGGTTTCTCAGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTTCATTGGAACAGAAAGAAATGG ATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAAGGTCATTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTG

Then go to the NCBI databases http://www.ncbi.nIm.nih.gov/

Distance tree of results NEW
Legend for links to other resources: UniGene GEO G Gene Structure Map Viewer

Alignments
Get selected sequences Select all Deselect all \quad Distance tree of results

Click "BLAST" on the main menu bar; then "Nucleotide blast" or "protein blast". Do a BLAST search for the gene/protein sequence you have been assigned. Then click on
"BLAST". Make sure you have selected a "nucleotide BLAST" if you have a nucleic acid sequence; a "protein BLAST" if you have a sequence of amino acids. Also, for our exercise, select "homo sapiens" for the species.

To compare two specific sequences, click on "BLAST2". [But that's not what we're going
to do today!]

Paste your sequence into the search box, and click on "BLAST" at the bottom of the page. You may get a list of sequences. The transcripts at the top of the screen, with very low 'E scores', are most closely related to the search sequence. So start from the top, and look for a "description" that mentions a particular gene sequence. You don't want a sequence with "putative", "tentative", or "predicted" in it; as these are not confirmed as "real" genes. Copy down the "Accession \#" for the mRNA you think is most likely the highest one you'd be interested in; here the top one,

NM_007305.2

```
\squarerefl\MM 007305.21 Hegm Homo sapiens breast cancer 1, ear1y onset (BRCA1), trangcrip
varrant BRCA1-del Ia9-10-11b, mRNA
Length=3759
GENE ID: 672 BRCA1 | breast cancer 1, early onset [Homo sapiens]
Score = 512 bits (277), Expect = 7e-143 (99%),
Strand=Plus/Plus
Query 1 CTTAGCGGTAGCCCCTTGGTTTCCGTGGCAACGGAAAAGCGCGGGAATTACAGATAAATT 60
|l11111111111111111111111111111111111111111111111111111
Query 61 AAAACTGCGACTGCGCGGCGTGAGCTCGCTGAGACTTCCTGGACGGGGGACAGGCTGTGG }1
Query 61 AaAR||||||||||||||||||||||||||||||||||||||||||||GG 120
Sbjct 61 AAAAACTGCGACTGCGCGGCGTGAGCTCGCTGAGACTICCTGGACGGGGGACAGGCTGTGG }1
Query 121 GGTITCTCAGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAA 180
Sbjct 121 \11111111111111111111111111111111111111111111111111111111 
Query 181 GTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAAGG 24
Sb->>>181 \111111111111111111111111111111111111111111111111111111 GTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAAG 24
Query 241 TCATTAATGCTATGCAGAAAAATCTTAGAGTGTCCCATCTG 280
Sbjct 241 \1111111111111111111111111111111111111111111/ TCATTAATGCTATGCAGAAAATCTIAGAGIGTCCCATCTG 280
```

If you scroll down on the results page, you'll see an alignment of the sequence you searched. As you can see from this example, the sequence came from BRCA1. Copy this gene name down. The mutation is at position 239 where the normal nucleotide 'T' (normal BRCA1 Sbjct)is replaced by ' G 'in the mutated query sequence.

Questions [for when you're looking into your assigned GENE]:

II-1. Where is the mutation located and what is the nature of the mutation? (example substitution, nonsense mutation, deletion, insertion).

Now you must use ENTREZ to learn more about the gene. Go back to the NCBI main screen; click on "Entrez Home", and insert the gene name [or if that doesn't work, the accession \#] this into the ENTREZ search. Then click "go" and click nucleotide.

Now click on the gene name link which, in this example, is BRCA1 homo sapiens.

This brings you to the main Entrez screen for the BRCA1 gene. You can get to all information about the gene from here. Bookmark this screen, to make it easy to get back to.

Also known as IRIS; PSCP; BRCAI; BRCC1; RNF53; BRCA1
Summary This gene encodes a nuclear phosphoprotein that plays a role in genomic stability and acts as a tumor suppressor. The encoded । with other tumor suppressors, DNA damage sensors, and signal t a large multi-subunit protein complex known as BASC for BRCA1surveillance complex. This gene product associates with RNA pol through the C-terminal domain, also interacts with histone deac This protein thus plays a role in transcription, DNA repair of dout and recombination. Mutations in this gene are responsible for ap! inherited breast cancers and more than 80% of inherited breast cancers. Alternative splicing plays a role in modulating the subce and physiological function of this gene. Many alternatively splice variants have been described for this gene but only some have \mathfrak{r} natures identified. [provided by RefSeq]

Genomic regions, transcripts, and products
(minus strand) Go to reference sequence details
Try

If you click on the NC_ accesssion number, it will go to the DNA sequence of the Chromosomal region.

earch Nucleotide \checkmark for brca1
Limits Preview/Index History Clipboard Details History has expired. ound 5545 nucleotide sequences. Nucleotide [4828] EST [5. Display Summary
All: 4828 Bacteria: 70 RefSeq: 1887 mRNA: 2732 天

Items 1-20 of 4828
This search in Gene shows 2207 results, including:
Brca1 (Rattus norvegicus): breast cancer 1
BRCA1 (Homo sapiens): breast cancer 1, early onset
BRCA1 (Bos taurus): breast cancer 1, early onset
$\square 1$: NM 019812 Reports
Mus musculus sirtuin 1 (silent mating type information reg mRNA
gi|9790228|ref|NM_019812.1|[9790228]
\square 2: NM 001142654 Reports
Homo sapiens alanyl-tRNA synthetase domain containins

\qquad

\square 1: NC 000017. Reports Homo sapiens chro...[gi:51511734]
Comment Features Sequence

Locus DEFINITION ACCESSION VERSION PROJECT
KEYWORDS
source
ORGANISM

NC_000017
81155 bp
DNA
linear
CON 03-MAR-2008
Homo sapiens chromosome 17, reference assembly, complete sequence. NC ${ }^{\text {NC }} 0000017$ REGION: complement (38449840..38530994)
GenomeProject:168
HTG.
Homo sapiens (human)
Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Marmalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
1 (bases 1 to 81155
International Human Genome Sequencing Consortium
Finishing the euchromatic sequence of the human genome
Nature 431 (7011), 931-945 (2004)
5496913
GENOME ANNOTATION REFSEQ: Features on this sequence have been produced for build 36 version 3 of the NCBI's genome annotation

ORIGIN
1 cttagcggta gccecttggt ttccgtggca acggaaaagc gcgggaatta cagataaatt 61 aaaactgcga ctgcgeggeg tgagctcget gagacttcct ggacggggga caggetgtgg 121 ggtttctcag ataactgggc cectgcgcte aggaggcett caccetctgc tctgggtaaa 181 ggtagtagag tcccogggaaa gggacagggg gcccaagtga tgctctgggg tactggcgtg 241 ggagagtgga tttccgaagc tgacagatgg gtattctttg acggggggta ggggcggaac 301 ctgagaggcg taaggcgttg tgaaccctgg ggaggggggc agtttgtagg tcgcgaggga 321 agcgctgagg atcaggaagg gggcactgag tgtccgtggg ggaatcctcg tgataggaa 481 ggaatatge ctogaggggg acactatgte ttaaaaacg tcggetggtc atgaggtcag 541 tagcegggeg tggtgccgct ccagctactc aggaggctga ggcaggagaa tcgctagaa 601 agecgggeg tggtgetget ecagctacte aggaggctga ggcaggagaa tegctagaac 661 gagcgagact gtctcaaaac aaaacaaaac aaaacaaaac aaaaaacacc ggctggtatg 721 tatgagagga tggracttg tggaagaaga qgtgccagga atatctctgg gaaggggagg 781 agacaggatt ttgtgggagg gagaacttaa gaactggatc catttgcgcc attgagaea 841 cgcaagaggg aagtagagga gcgtcagtag taacagatgc tgccggcagg gatgtact 901 aggaggatcc agagatgaga gcaggtcact gggaaaggtt agggcgggg aggccttgat 961 tggtgttggt ttggtcgttg ttgattttgg ttttatgcaa gaaaaagaaa acaaccaga 1021 acattggaga aagctaaggc taccaccacc tacccggtca gtcactcctc tgtagcttcc 1081 tctttcttgg agaaaggaaa agacccaagg ggttggcagc aatatgtgaa aaaattcaga 1141 atttatgttg tctaattaca aaaagcaact tctagaatct traaaaataa aggacgttgt 1201 cattagttct ttggtttgta ttattctaaa accttccaaa tcttaaattt acticgttgt 1261 aaaatgataa aatgaagttg tcattttaa accteccaaa tcttaaattt actttatttt 1261 aaaatgataa aatgaagttg tcattttata aaccttttaa aaagatatat atatatgttt 1321 ttctaatgtg ttaaagttca ttggaacaga aagaaatgga tttatctgct cttcgcgttg 381 aagaagtaca aaatgtcatt aatgctatgc agaaaatctt agagtgtccc atctggtaag 1441 tcagcacaag agtgtattaa tttgggattc ctatgattat ctcctatgca aatgaacaga 1501 attgacctta catactaggg aagaaaagac atgtctagta agattaggct attgtaattg 1561 ctgattttct taactgaaga actttaaaaa tatagaaaat gattccttgt tctccatcca 1681 actctgtctt gattggttct gcactggggc aggaatctag tttagattaa ctggcatttt 1681 actctgtctt gattggttct gcactggggc aggaatctag tttagattaa ctggcatttt 1801 atgaggcega gggcggtggc ttatgcctgt aatcccagca ctttgggagg ccaaggtggt 1801 atgaggccga gggcggtggc ttatgcctgt aatcccagca ctttgggagg ccaaggtggt

Scroll down on this screen, and you'll see the actual DNA sequence:

If you click on NM_ it will give the mRNA sequence. Here, you can determine the transcript size.
If you click NP_it will give protein sequence information. Here you can find the amino acid sequence and molecular weight.

[^0]Questions during this phase of the assignment [related to YOUR OWN GENE].

II-2. How many different transcripts are shown? How do they differ?

II-3: Focusing on the very first transcript: How many introns and exons are there? What is the length of this mRNA transcript?

II-4. What is the number of amino acids of the protein?

Now you are ready to finally use OMIM to study the biological mechanism of how this mutated gene causes disease (in this example it is breast cancer). Please go to

NCBI and click OMIM and enter your normal gene (in this example BRCA1) as shown below.

Click on "Go" and you will see the following screen.

Check to make sure that the first gene is the one of interest, and then click on its number.

This is the site where you get to play detective and learn about the exciting biology of this gene that causes this disease.
Questions to answer:

PART 4: PANDEMIC FLU

The most amazing thing about the 2009 Pandemic flu is, in my opinion, the fact that DNA sequences of the pathogen were posted online in nearly real-time, allowing physicians and scientists around the world to investigate the infection with new computer tools. We will examine those tools here.

Imagine yourself a physician with a patient having a suspected case of H 1 N 1 pandemic flu. You take a swab, and send it to the state lab for testing, which involves using PCR to amplify any flu viruses in the sample, and sequencing the amplified DNA.

Go to http://www.cdc.gov/h1n1flu/

Near the bottom under "Additional Links", go to the Genbank resources. You might want to bookmark this page.
Restricting your work to this site will limit all searches to influenza viruses, so will make your work easier.
Here is a portion of the sequence found from a virus from your patient:

[^1]1. Based upon this fragment:
A. What viral gene is this from?
B. What strain of the virus does this seem to be from?
C. Based upon the sequence information available, where would you guess this person was exposed to this virus?
D. What antivirals do you believe the virus will or will not respond to, based upon the record associated with this gene?

Download and save the protein sequence.
2. Were this early on in a new infection cycle, you would want to find out what species this virus seems to have come from. Go to the NCBI Influenza Virus Sequence Database. You'll make a tree. Select about 4 sequences each from each:

- USA H1N1 human flu from 2009
- USA H1N1 swine flu, and then avian flu, and a flu from another species, all from 2000-2009

Make sure you're comparing the same gene segments for each virus. Click on "full length", and "Remove identical".

Which viruses are these genes from the human H1N1 flu viruses most closely related to? Print screen and paste a copy of the screen from which you're making your conclusions into this document here.
3. Now that you know you're dealing with a new swine flu, you might want to see if this year's flu vaccine will offer any protection to the public. What part of the protein is most important for vaccines? Open another window, and we'll examine the protein structure. First, go to the protein database "pdb.org". There are many entries for hemagglutinin, but we'd like to see how it interacts with the immune system. So search for "HEMAGGLUTININ and ANTIBODY". Take note of the 4 character code next to the check box.

We could examine the protein structure by clicking on the name, but that requires a plug-in that isn't installed on campus computers. So instead, google "firstglance", and search for the code you copied down. "1QFU". Chain ' A ' is the viral protein we're looking at; H and L are chains of an ANTIBODY molecule that's bound to the virus.
4. Based upon your aligment, and the "firstglance" model for this protein, if you were to make an 'artificial' vaccine against this new flu, which part of the protein would you want to include [give a rough range of about 50 amino acids], and why?
5. A. Go back to the Genbank page. Find "vaccines" on the menu bar on the left. Look up the contents of the 2008-2009 flu vaccine. What is the name of the H1N1 virus in the vaccine?
B. Using any tool you wish, get the sequence of the hemagglutinin protein of that H 1 N 1 virus that the 2008-2009 vaccine was based upon. Save that sequence somewhere.
C. Use blast2seq to compare the sequence of the protein used in the 2008-2009 vaccine to that of your patient's blood sample. What \% identities do you find? Are they very similar in the area you found to be important in question \#4?
D. Based upon this result, without further information, would you guess that last year's vaccine would provide much protection against the current pandemic flu? Explain your reasoning in a few sentences.

Part 5: Investigating a Mutation in HIV-1

Lab Report: Answer the questions below as your lab report. You may need to do some background research on HIV;

 Use cdc.gov as a starting resource to find information on HIV.
Questions:

1. Patients A and B are both HIV positive. Patient A has a CD4 count of 650 cells $/ \mu \mathrm{L}$ and patient B has a CD4 count of 160 cells $/ \mu \mathrm{L}$. Do both patients have AIDS? Explain why CD4 counts are used as a diagnosis of AIDS.
2. What is meant by the term "lentivirus"?
3. What is proviral DNA?
4. Directions: Draw a haplotype tree [basically a family tree, showing the relationships between the different "clones" or sequences] for the following sequences. These are from a patient, from two different blood draws at different times. The subject was infected with a single clone of HIV which had already evolved into 4 different clones by the time of the second visit. Keep in mind that the haplotype tree should show clones from the second visit evolving from clones from the first visit. (Hint: all clones evolved from V1-1)

V1-1 GAGATAGTAA TTAGATCTGC CAATTTCTCG GACAATACTA AAA 43
V2-1 GAGGTAGTAA TTAGATCTGC CAATCTCACG GACAATGCTA AGA 43
V2-3 GAGATAGTAA TTAGATCTGC GAATTTCACG GACAATACTA AAA 43 V2-2 GAGGTAGTAA TTAGATCTGC CAATCTCACG GACAATGCTA AAA 43 V2-4 GAGGTAGTAA TTAGATCTGC CAATTTCACG GACAATACTA AAA 43 More detailed Procedure:

1. Since all the sequences listed evolved from the V1-1 sequence, use that sequence as your root.

Circle changes from the S16V1-1 sequence in all the other sequences.
2. Start drawing the haplotype tree with the $\mathrm{V} 1-1$ sequence as the root. The next sequence(s) should be the one(s) that require the fewest \# of changes from V1-1.
On each line connecting two 'clones', write the nucleotide change(s) required to go from one sequence to the next.
3. Continue drawing the tree until all of the clones are included.

[^0]: IN
 1 mnvekaefen kskqpglars qhnrwagske tendrrtpst ekkvdlnadp lcerkewnkq 121 klpcsenprd tedvpwitln ssiqkvnewf srsdellgsd dshdgesesn akvadvidv1 181 nevdeysgss ekidllasdp healickser vhsksvesni edkifgktyr kkaslpnlsh 241 nqteqngqvi nitnsghenk tkgdsiqnek npnpieslek esafktkaep isssisnmel 301 elnihnskap kknrlrrkss trhihalelv vsrnlsppnc telqidscss seeikkkkyn 361 qmpvrhsrnl qlmegkepat gakksnkpne qtskrhdsdt fpelkltnap gsftkesnts 421 elkefvnpsl preekeekle tvkvsnnaed pkdlmlsger vlqtersves ssislvpgtd 481 ygtqesisll evstlgkakt epnkcvsqca afenpkglih gcskdnrndt egfkyplghe 541 vnhsretsie meeseldaqy lqntfkvskr qsfapfsnpg naeeecatfs ahsgsikkqs 601 pkvtfeceqk eenqgknesn ikpvqtvnit agfpvvgqkd kpvdnakcsi kggsrfclss 661 qfrgnetgli tpnkhgllqn pyripplfpi ksfvktkckk nlleenfeeh smsperemgn 721 enipstvsti srnnirenvf keasssnine vgsstnevgs sineigssde niqaelgrnr 781 gpklnamlrl gvlqpevykq slpgsnckhp eikkqeyeev vqtvntdfsp ylisdnleqp 841 mgsshasqv setpddlldd geikedtsfa endikessav fsksvqkgel srspspftht 901 hlaqgyrrga kklesseenl ssedeelpcf qhllfgkvnn ipsqstrhst vateclsknt 961 eenllslkns lndcsnqvil akasqehhls eetkcsaslf ssqcseledl tantntqdpf 1021 ligsskqmin qsesqgvgls dkelvsddee rgtgleennq eeqsmdsnlg eaasgceset 1081 svsedcsgls sqsdilttqq rdtmqhnlik lqqemaelea vleqhgsqps nsypsiisds 1141 saledlrnpe qstsekavlt sqksseypis qnpeglsadk fevsadssts knkepgvers 1201 spskcpsldd rwymhscsgs lqnrnypsqe elikvvdvee qqleesgphd ltetsylprq 1261 dlegtpyles gislfsddpe sdpsedrape sarvgnipss tsalkvpqlk vaesaqspaa 1321 ahttdtagyn ameesvsrek peltasterv nkrmsmvvsg ltpeefmlvy kfarkhhitl 1381 tnliteetth vvmktdaefv certlkyflg iaggkwvvsy fwvtqsiker kmlnehdfev 1441 rgdvvngrnh qgpkraresq drkifrglei coygpftnmp tdqlewmvql cgasvvkels

[^1]: atgaaggcaa tactagtagt tctgctatat acatttgcaa ccgcaaatgc agacacatta
 61 tgtataggtt atcatgcgaa caattcaaca gacactgtag acacagtact agaaaagaat 121 gtaacagtaa cacactctgt taaccttcta gaagacaagc ataacgggaa actatgcaaa 181 ctaagagggg tagccccatt gcatttgggt aaatgtaaca ttgctggctg gatcctggga 241 aatccagagt gtgaatcact ctccacagca agctcatggt cctacattgt ggaaacatct 301 agttcagaca atggaacgtg ttacccagga gatttcatcg attatgagga gctaagagag 361 caattgagct cagtgtcatc atttgaaagg tttgagatat tccccaagac aagttcatgg 481 cccaatcatg actcgaacaa aggtgtaacg gcagcatgtc ctcatgctgg agcaaaaagc 481 ttctacaaaa atttaatatg gctagttaaa aaaggaaatt catacccaaa gctcagcaaa 541 tcctacatta atgataaagg gaaagaagtc ctcgtgctat ggggcattca ccatccatct 601 actagtgctg accaacaaag tctctatcag aatgcagatg catatgtttt tgtggggtca 721 gaagggagaa tgaactatta ctggacacta gtagagccog gacccaaagt gagggatcaa 781 gcaactggaa atctagtggt accgagatat gcattcgcaa tggaaagaaa tgctggatct 841 ggtattatca tttcagatac accagtccac gattgcaata caacttgtca gacacccaag 901 ggtgctataa acaccagcct cccatttcag aatatacatc cgatcacaat tggaaaatgt 961 ccaaaatatg taaaaagcac aaaattgaga ctggccacag gattgaggaa tgtcccgtct 1021 attcaatcta gaggcctatt tggggccatt gccggtttca ttgaaggggg gtggacaggg 1081 atggtagatg gatggtacgg ttatcaccat caaaatgagc aggggtcagg atatgcagcc 1141 gacctgaaga gcacacagaa tgccattgac gaaattacta acaaagtaaa ttctgttatt 101 gaaaagatga atacacagtt cacagcagta ggtaaagagt tcaaccacct ggaaaaaaga 261 atagagaatt taaataaaaa agttgatgat ggtttcctgg acatttggac ttacaatgcc
 321 gaactgttgg ttctattgga aaatgaaaga actttggact accacgattc aaatgtgaag

