

8

Collect, analyze, and synthesize

• Collect:

- GEP UCSC Genome Browser
- Conservation (BLAST searches)
- Analyze:
 - Interpreting Genome Browser evidence tracks
 Interpreting BLAST results

• Synthesize:

 Construct the best-supported gene model based on potentially contradictory evidence

9

Evidence for gene models

(in general order of importance)

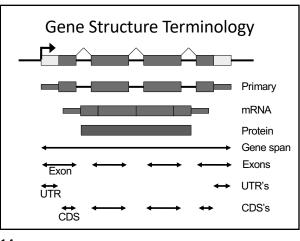
- Conservation

 Sequence similarity to genes in *D. melanogaster* Sequence similarity to other *Drosophila* species (Multiz)
- Expression data

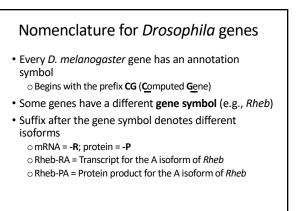
 RNA-Seq, EST, cDNA
- 3. Computational predictions Open reading frames; gene and splice site predictions
- 4. Tie-breakers of last resort • See the "Annotation Instruction Sheet"

10

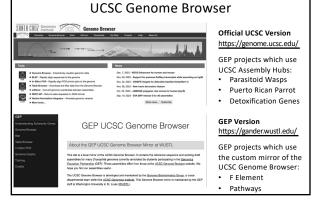
GEP Annotation Strategy


- Use *D. melanogaster* as reference

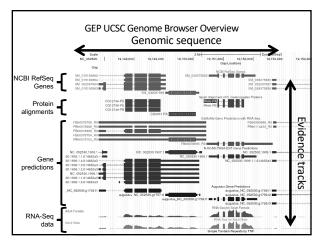
 D. melanogaster is very well annotated
 Use sequence similarity to infer homology
- Minimize changes compared to the *D. melanogaster* gene model (parsimony)
 - Coding sequences evolve slowly
 Exon structure changes very slowly


Annotation Goals

- Identify the ortholog of a gene of interest from an informant genome (*D. melanogaster*) in the target genome (e.g., *D. yakuba*)
- For <u>ALL</u> unique isoforms, identify and map the locations of all coding exons (**CDS**) in the target genome


	Resou		
1. Merge files before submission		A-T-H-V	
2. Check that proposed gene model meets basic	About Project Curriculum	Pilot Project Curriculum Prerequisite C	
biological constraints (e.g., has start and stop codon)	Resources & Tools 1 Annotation Files Merger Core Promoter Motifs FlyBase	Faculty Resources Batching BLAST Searches Project Claim Form Project Submission Folder	Help How to Copy and Paste How to Take a Screenshot Frequently Asked Questions
3. Look up information on <i>D. melanogaster</i>	2 Gene Model Checker 3 Gene Record Finder 4 GEP UCSC Genome Browser Gateway 5 NCBI BLAST 6 Pathways Project Genome Assemblies	Micropublications Student Co author Responsibilities Faculty Co-author Responsibilities Statua Tracking Overview	Pathways Project YouTube Playlist Tool Tutorials and User Guides Virtual TA Schedule Contacts
4. Local mirror of UCSC Genome Browser	Sequence Updater Small Exons Finder Genomic Neighborhood Template (PowerPoint Google Slides)	Status Tracking Database Workflow Policies	Project Leader: Laura K. Reed Technical Support: Chinmay P. Rele Curriculum Support: Katie M. Sandin
5. hlastn and thlastn*	Phylogenetic Tree Derived from 36 RefSeq Drosophile Genomes		

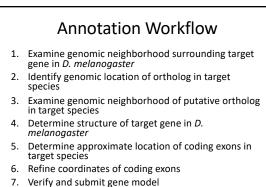
14



15

Two different versions of the

16


UCSC Genome Browser

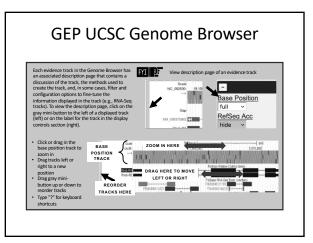
- Provide a graphical view of genomic regions
 - Sequence conservation
 - Gene and splice site predictions
 - $\circ\,\text{RNA-Seq}$ data and splice junction predictions
- BLAT <u>B</u>LAST-<u>Like</u> <u>Alignment</u> <u>T</u>ool
 - \circ Map protein or nucleotide sequence against an assembly
 - \odot Faster but less sensitive than <code>BLAST</code>
- Table Browser
 - $\circ\,\mathsf{Access}$ raw data used to create the graphical browser

Control Display of Evidence Tracks

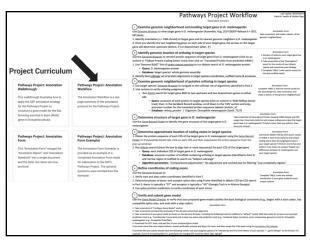
- Five different display modes:
 - o <u>Hide</u>: track is **hidden**
 - Dense: all features appear on a single line
 - Squish: overlapping features appear on separate lines
 Features are half the height compared to full mode
 - <u>Pack</u>: overlapping features appear on separate lines
 - Features are the same height as full mode
 <u>Full</u>: each feature is displayed on its own line
 - Set "Base Position" track to "Full" to see the amino acid translations
- Some evidence tracks only have a subset of these display modes

19

21

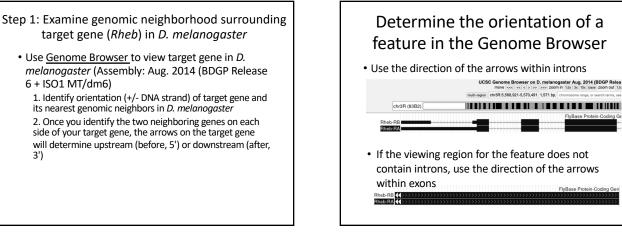

Annotation Workflow

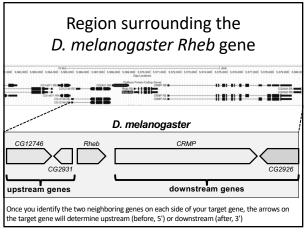
Repeat steps 5-7 for each unique isoform


1. Examine genomic neighborhood surrounding target gene in *D. melanogaster*

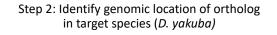
z. ident speci

- 3. Examine genomic neighborhood of putative ortholog in target species
- 4. Determine structure of target gene in malaneaster.
- 5. Determine approximate location of coding exons in target species
- 5. Refine coordinates of coding exons
- 7. Verify and submit gene model

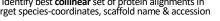

20

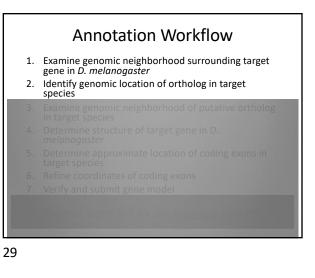

22

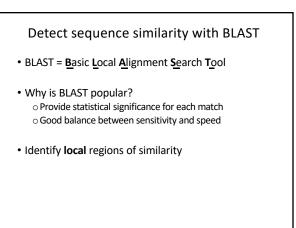
Step 1


- Genomic neighborhood: A local region of the genome containing a small number of genes (5-15) or other features (e.g., repeats). The genomic neighborhood, as related to the Pathways Project, is the region containing the target gene and its neighboring two closest upstream genes and two closest downstream genes.
- Target gene: Rheb
- Targe species: D. yakuba

25


27




Use the Genome Browser to retrieve protein sequence of target gene from D. melanogaster (click on an isoform in 'FlyBase Protein-Coding Genes' track; then click on 'Translated Protein from predicted mRNA') 1. Use 'Genome BLAST' link of target species genome to run *tblastn* search of *D. melanogaster* protein

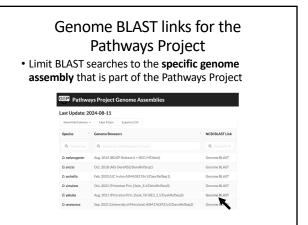
• Query: D. melanogaster protein

 Database: target species' whole genome assembly 2. Identify best **collinear** set of protein alignments in target species-coordinates, scaffold name & accession

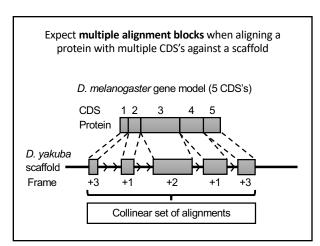
Common BLAST programs

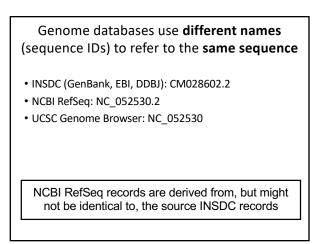
- Except for *blastn*, all alignments are based on comparisons of protein sequences

 Alignment coordinates are relative to the original sequences
- Decide which *BLAST* program to use based on the type of query and subject sequences:

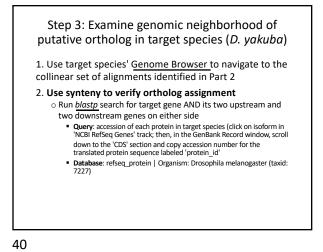

	Program	Query	Database (Subject)
	blastn	Nucleotide	Nucleotide
Γ	blastp	Protein	Protein
_	blastx	Nucleotide \rightarrow Protein	Protein
	tblastn	Protein	$Nucleotide \rightarrow Protein$
	tblastx	Nucleotide \rightarrow Protein	Nucleotide \rightarrow Protein
		Arrows indicate the BLAST program nucleotide sequence <u>before</u> perform	n translates the ning the search.

32

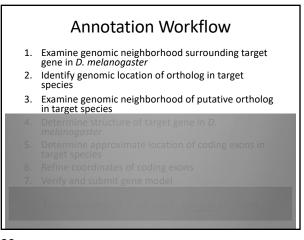



34

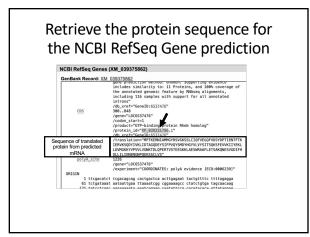
	Subject	Identities		Species	Target !	nogaster	D. mela	
	Frame	(%)	E-Value	Subject End	Subject Start	Query End	Query Start	Range
	-3	46	0.002	11,148,431	11,148,568	44	6	1
	+3	28	5e-06	11,419,094	11,418,759	108	18	2
	+3	90	2e-78	19,150,868	19,150,809	20	1	3
best colline	+1	83	2e-78	19,151,070	19,150,981	45	16	4
set o	+2	97	2e-78	19,151,359	19,151,150	109	40	5
alignme to Rheb	+1	93	2e-78	19,151,550	19,151,422	153	111	6
_	+3	93	2e-78	19,151,699	19,151,610	182	153	7

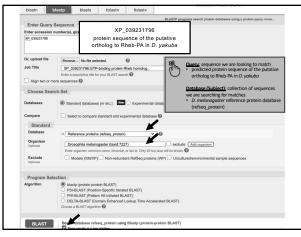


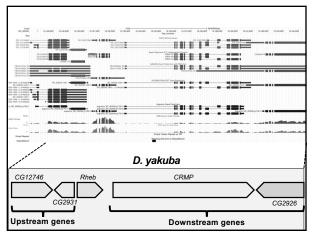
33

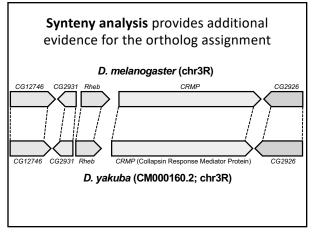


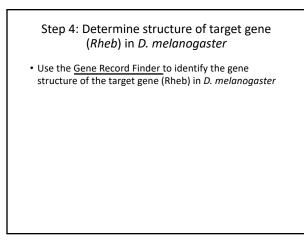
Retrieve the protein sequence for the NCBI RefSeq Gene prediction

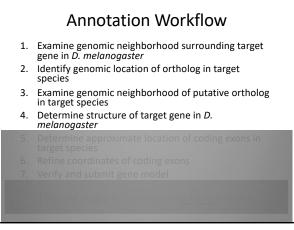


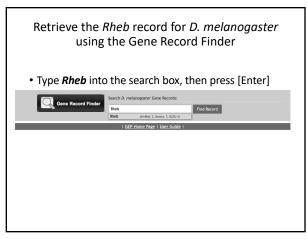

39

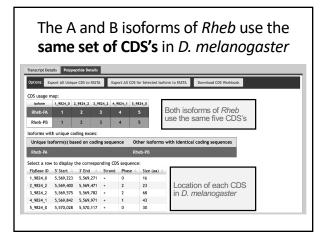

Use the NCBI RefSeq Genes predictions to gather additional evidence for the ortholog assignment • Each bioinformatics tool has different strengths and weaknesses • Trade-offs:

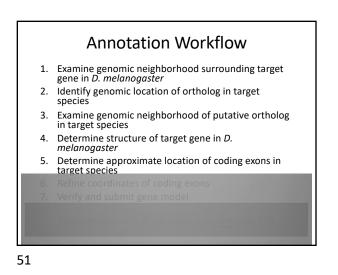

- Sensitivity versus specificity
- Required computational resources versus accuracy
- Program parameters often determined by heuristics
 - Optimized for the whole genome assembly

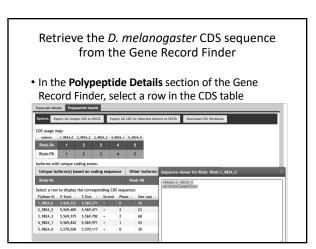

Need to evaluate and reconcile potentially contradictory results on the genome browser

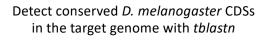




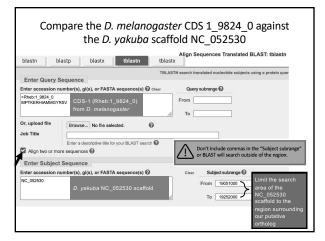








Step 5: Determine approximate location of coding exons in target species
Obtain the protein sequence of each CDS of the target gene in *D. melanogaster* using the <u>Gene Record Finder (in</u> Polypeptide Details tab, click on each CDS and then copy/paste the entire sequence from the pop-up window)
Run *tblastn* search (check the box to align two or more sequences) for each CDS of the target gene


Query: each individual CDS of target gene in D. melanogaster
Database: accession number of scaffold containing ortholog in target species (identified in Part 2) and narrow region of scaffold to search via "Subject subrange"
Algorithm parameters: "Compositional adjustments"- No adjustment and uncheck box for filtering "Low complexity regions"

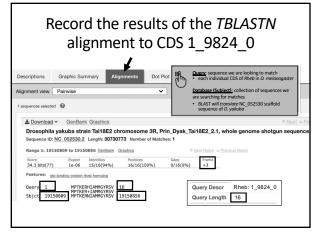
52

- Coding sequences evolve slowly
- Exon structure changes very slowly
- Initial hypothesis:
 - Gene structure is conserved between *D. melanogaster* and the ortholog in the target species
- Map each CDS separately to the target genome

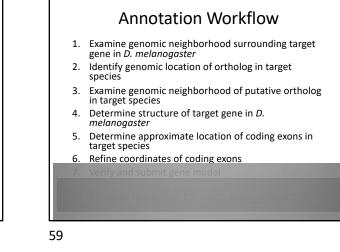
*	stomize algorithm parameters to increase the sensitivity of the <i>tblastn</i> search Note: Parameter values that differ from the default are highlighted in yellow and m
+ Algorithm param	leters
General Parar	neters
Max target sequences	100 V Select the maximum number of aligned sequences to display @
Expect threshold	0.05
Word size	+ 5 ~ @
Max matches in a query range	0
Scoring Parar	neters
Matrix	BLOSUM62 V
Gap Costs	Existence: 11 Extension: 1 V
Compositional adjustments	No adjustment Turn off compositional adjustments
Filters and Ma	asking
Filter	← □ Low complexity regions Turn off the low complexity filter
Mask	Mask for lookup table only @

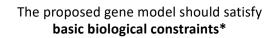
	umma Rheb C	DS's	agair	nst tł		yaku	
		Query	D. mela	nogaster	Target	Species	Subject
CDS	FlyBase ID	Length Size (aa)	Query Start	Query End	Subject Start	Subject End	Frame
1	1_9824_0	16	1	16	19,150,809	19,150,856	+3
2	2_9824_2	23	1	23	19,150,987	19,151,055	+1
3	3_9824_2	68	1	68	19,151,156	19,151,359	+2
4	4_9824_1	43	1	43	19,151,422	19,151,550	+1
5	5_9824_0	30	1	30	19,151,613	19,151,702	+3
		Query: CDS Subject: D.			ogaster Rh 052530	eb gene	

58

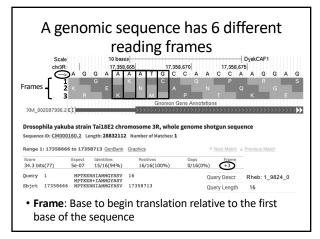


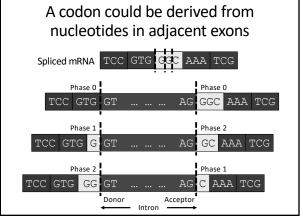
Use the Genome Browser to:

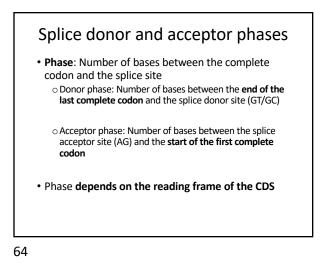

1. Verify start and stop codon coordinates identified in Part 5

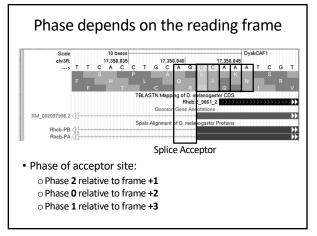

2. Determine phases of donor and acceptor splice sites using Frame identified in *tblastn* CDS-by-CDS search in Part 5

- donor is typically a "GT" and acceptor is typically an "AG" (Georgia Tech is in Atlanta Georgia)
- 3. Use splice junction predictions to verify coordinates of each intron

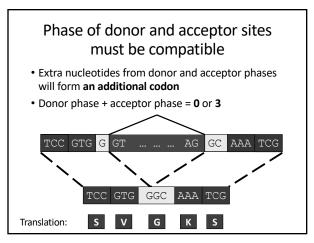

57

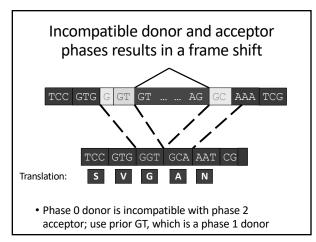


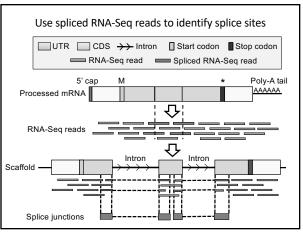


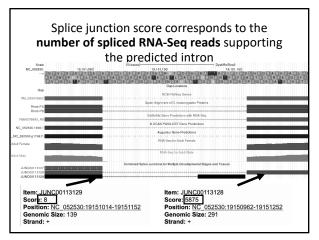

- Coding regions start with a methionine
- Coding regions end with a stop codon
- Gene should be on only one strand of DNA
- Exons appear in order along the DNA (collinear)
- Intron sequences should be at least 40 bp
- Intron starts with a **GT** (or rarely GC)
- Intron ends with an AG

*There are known exceptions to each rule

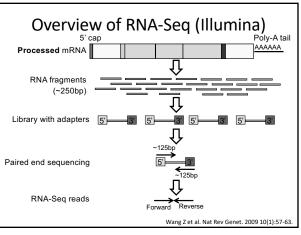


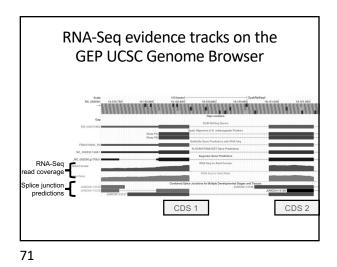


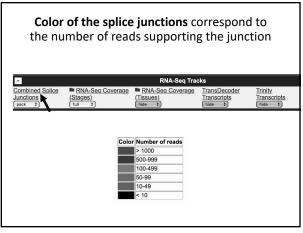


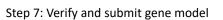

Interpreting RNA-Seq data

- RNA-Seq evidence tracks:
 - RNA-Seq coverage (read depth)
 Splice junction predictions (*TopHat, regtools*)
 Assembled transcripts (*Cufflinks, Oases, StringTie*)
- Positive results very helpful
- Negative results less informative • Lack of transcription ≠ no gene
- GEP curriculum:
 - o RNA-Seq Primer
 - $\odot \, \textsc{Browser-Based}$ Annotation and RNA-Seq Data






70



Gene Model for R <u>heb-PA i</u> n D. yakuba						
CDS	FlyBase ID	Frame	Splice Acceptor Phase	Coord	Splice	
				Start	End	Donor Phase
1	1_9824_0	+3		19,150,809	19,150,857	1
2	2_9824_2	+1	2	19,150,985	19,151,056	1
3	3_9824_2	+2	2	19,151,154	19,151,361	2
4	4_9824_1	+1	1	19,151,421	19,151,550	0
5	5_9824_0	+3	0	19,151,613	19,151,699	

• Use the Gene Model Checker to verify that your proposed gene model satisfies the basic biological constraints (e.g., begins with a start codon, has compatible splice sites, and ends with a stop codon)

76

Annotation Workflow

- 1. Examine genomic neighborhood surrounding target gene in D. melanogaster
- 2. Identify genomic location of ortholog in target species
- 3. Examine genomic neighborhood of putative ortholog in target species
- Determine structure of target gene in D. 4. melanogaster
- Determine approximate location of coding exons in 5. target species
- 6. Refine coordinates of coding exons
- 7. Verify and submit gene model

Repeat steps 5-7 for each unique isoform

Verify the final gene model using the Gene Model Checker • Examine the checklist and explain any errors or warnings in the Pathways Project Annotation Report · View your gene model in the context of the other evidence tracks on the Genome Browser

2.

3.

4.

5.

7.

75

species

melanogaster

target species

· Examine the dot plot and explain any discrepancies in the Annotation Report

Annotation Workflow

1. Examine genomic neighborhood surrounding target gene in *D. melanogaster*

Examine genomic neighborhood of putative ortholog in target species

Determine approximate location of coding exons in

Identify genomic location of ortholog in target

Determine structure of target gene in D.

6. Refine coordinates of coding exons Verify and submit gene model

- Look for large vertical and horizontal gaps
- o See the "Quick Check of Student Annotations" document on the GEP web site