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1 What do we Mean by a Sequence Motif?

We can talk about motifs from a biological or a computational standpoint.

e Biologically speaking, a motif in DNA or RNA (or protein) sequence
is a short functional sequence element.

e Examples found in genomic DNA include

— transcription factor binding sites
— small noncoding RNAs
— small repetitive elements (e.g. inverted repeats)

— common mRNA elements, such as Shine-Dalgarno or Kozak se-
quences, splice enhancers and suppressors.

e We will be strongly tempted to talk about conserved DNA sequence
motifs. But we must be careful to recognize that many motifs, es-
pecially short transcription factor binding sites, are known to arise
convergently. Hence, the various instances of a motif, while similar
in appearance, may not actually be homologs. Don’t say “conserved”
unless you mean it!

To understand motif-finding algorithms, it will help to consider a more ab-
stract conception of what a “motif” is.

e A motif is a short sequence element that is repeated, perhaps with
variation, multiple times in a collection of sequences.

e Typical motif lengths are five to a few tens of bases.



What does “repeated with variation” mean? We need to define this
idea more precisely in order to build motif-finding algorithms.

A motif is described by a computational model that specifies how it may
vary across its instances. We will consider several important questions for
working with motif models:

1.
2.

Let’s

Given a putative motif instance, how well does it fit the model?

Given a collection of putative instances, can we derive a model that
fits them well?

. When is a putative motif interesting enough to warrant further study?

focus for a minute on what “interesting” means.

Given a putative motif, we would like to reject the null hypothesis that
it is just a bunch of unrelated sequences.

More precisely, we typically assume a background model for sequences
that are not part of the motif, and we want to reject the hypothesis
that the putative motif’s sequences are unrelated samples from this
background.

Intuitively, a putative motif whose instances display less variation
should be more interesting, since the instances are more similar than
would be expected for unrelated sequences drawn from the background.

Often, the background is assumed to consist of i.i.d. (independent and
identically distributed) random DNA bases, with each base chosen
according to some fixed multinomial distribution.

We will sketch quantitative measures of interest for motifs, but how
to turn these measures into p-values is beyond the scope of this talk.
Different programs use different approaches.

2 A Simple Model of Motif Sequence Variation

To precisely describe motifs, we introduce two formal models: the consensus
and the weight matriz model. We consider the consensus model first.

Let C be a “Platonic ideal” sequence of the motif. For example, for a
transcription factor binding site, C' might be the sequence that most
strongly binds its target protein domain.



e Every instance of the motif is assumed to be a variant of C. Instances
might deviate from C' by some number of differences (substitutions,
insertions, and/or deletions).

e For example, if C is “agtagc”, the actual instances of the motif might
be, e.g., “agcagc”, “attac”, and “agtggc”.

e We call C' the motif’s consensus sequence.
Let’s consider the questions outlined above for the consensus model.

e A putative motif instance can be aligned to C using the Smith-Waterman
algorithm to determine how many differences separate it from C.

e To infer a model C from a collection of instances, we (multiple-) align
them and then let each position of the aligned sequences “vote” on
what base should be given in the consensus.

e We can describe degenerate consensus positions using [IUPAC ambi-
guity symbols. For example, “R” represents a purine (a or g).

e Inferring C is trivial if motif instances can differ from it only by sub-
stitution. If they can have insertions and deletions, finding the “best”
C is computationally hard but can be approximated.

OK, what about a measure of motif interest?

e One useful measure of interest for a motif in the consensus model is
the radius: if we align all instances of the motif against its consensus
C, the motif’s radius is the smallest r such that every instance differs
from C by at most r differences.

e (In the above example, the radius is 2.)

e We also need to know the proposed motif’s length to measure interest,
since 2 differences in 5 is a lot less interesting than 2 differences in 20.

e Finally, we need to know how many instances exist. A motif with 100
close instances in a given amount of sequence is a lot more interesting
than one with just 3.

e To turn this multi-part measure of interest into a p-value, a program
must compute the chance that a set of putative motif instances would
all arise independently by chance in a given amount of background
sequence.



3 Another Model of Motif Sequence Variation

The consensus model, while appealing to people who like combinatorics, is
limited in its ability to describe variation in a motif.

e Not every position of a motif may be equally variable. For example,
eukaryotic splice donor sites have an almost invariant “gt” at the intron
boundary, but the surrounding sequence, while not invariant, exhibits
more similarity across splice sites than would be expected by chance.

e Not all differences from the consensus may be equally likely. TUPAC
ambiguity symbols cannot capture an arbitrary set of base frequencies
in a particular position.

To capture these position- and sequence-dependent effects, we introduce the
weight matriz model (WMM). For simplicity, we will assume that motifs
modeled by a WMM have fixed length — their instances cannot exhibit in-
sertions and deletions relative to the model.

e A WMM for a motif of length ¢ is a 4 x £ matrix W of probabilities.
The four rows of W are labeled with the four DNA bases, while the
columns are labeled 1.../1.

e W(c,1) is the probability that position ¢ of a motif instance is the base
c.

e Instances of the motif are assumed to be drawn uniformly at random
from W. More precisely, the ith base of an instance is drawn indepen-
dently from the multinomial distribution W (x, 7).

e Here’s an example W of a WMM with ¢ = 6:

1 2 3 4 5 6
04 0.1 025 03 0.1 0.1
0.1 0.7 025 0.2 0.1 04
04 0.1 025 02 0.1 0.1
0.1 0.1 025 0.3 0.7 04
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Once again, let’s consider our fundamental questions about motif models.

e For any sequence s of length ¢, we can compute Pr(s | W), the prob-
ability that s arises as an instance of W, by multiplying together the
probability of seeing each base in s.



e For example,

Pr(acagtc | W) = 0.4 x0.7x0.25 x 0.2 x 0.7 x 04
0.004.

e Given a collection of putative instances of common length n, we can
infer a motif model W by setting the probabilities directly from the
counts of each base at each position.

e That is,

# of instances with base ¢ at position ¢

W(e, i) =
(e,1) = total # of instances

e The resulting W is guaranteed to give the highest total probability for
the observed instances among all possible weight matrices; that is, it
is a maximum-likelihood estimate of W given the instances.

e (In practice, we don’t want to let any entry of W be zero, since we
infer these probabilities from only a finite number of examples.)

How do we measure how interesting a putative motif is in this model?

e Let W be a motif inferred from n putative instances s; ... s,.

e For any s;, we can compare Pr(s; | W) to the chance Pr(s; | B) that
s;j arose from some background base distribution B.

e The quantity log Pr((‘s] ||Ig)) is the log-likelihood ratio (LLR) for compar-

ing hypotheses W and B given s;. If this quantity is greater than 0,
sj is more likely to have come from the motif W than from B. If it is
less than 0, the opposite is true.

e Our measure of interest for W is the total LLR score

r(s; | W)
1 o\ 0"
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e Note that the total LLR of a collection of putative instances is the
sum of the LLR for each; equivalently, it is the log of the product of
the probability ratios for the instances.



e Motifs with higher total LLR scores look less like the background and
more like their most plausible common WMM!

e Greater similarity among instances makes the probability distributions
in W more sharply peaked and hence raises LLR scores].

e To assign a p-value to a putative motif, a program must compute the
probability of seeing a motif with total LLR of at least some ¢ in a
given amount of background sequence.

There are many ways to elaborate the basic WMM to describe more complex
motifs. An example is the class of symmetric binding sites with a spacer,
which are common in bacteria due to the prevalence of homodimeric tran-
scription factors. One can also permit motif instances to exhibit insertions
and deletions vs. the WMM by expanding it into a more general hidden
Markov model.

4 Gathering Evidence for a Motif
We now transition from describing motifs to finding them.

e The models described above provide ways to quantify how interesting
a motif is if we know its instances and the background in which it
occurs.

e In the motif-finding problem, we are given some sequences that are
believed to contain a motif, but we do not know which parts of the
sequences are motif instances and which are background.

e There are two main variants of this problem: either the sequences are
assumed to be unrelated to each other, or they are assumed to be
homologous (and hence alignable). The algorithms used for these two
cases are quite different.

We'll start with the case of unrelated sequences.

e Consider, for example, searching for a transcription factor binding site
that occurs in the promoters of several different genes. These promoter
regions are not usefully homologous, so we treat them as unrelated
background sequences.



e We hypothesize that there exists a common motif with instances in
some or all of these promoter sequences, though we don’t know where
the instances are.

e Our goal is to find the most plausible motif — a set of putative instances
matching a motif that is as unlike the background (high total LLR, or
small radius for length) as possible.

e Such a motif (hopefully) explains its putative instances significantly
better than does the null hypothesis.

Finding the best possible motif in a set of sequences is a computationally
hard problem!

e In the consensus model, we typically fix a motif length ¢, a minimum
instance count k, and a radius r, then seek sets of at least k instances
that are all within radius r of some common consensus.

e Algorithms that do this search are often enumerative — they enumerate
all possible consensus sequences C' and check whether there is a good
motif (as defined above) in the data matching each C.

e Many sneaky tricks can be used to speed up this enumerative search,
but its cost is fundamentally exponential in the motif length ¢ and/or
the input sequence length.

e For the WMM, we fix a motif length ¢ and seek a set of putative
instances that maximize total LLR of their best WMM vs. the back-
ground (which is assumed to consist of all sequence not part of a motif
instance).

e We may make any of several assumptions as to how motif instances
are distributed in each input sequence — one instance per sequence, at
most one instance per sequence, multiple instances per sequence, etc.

e While enumerative search can be used here as well, a more common
approach is local search: guess an initial WMM W{ matching a set
So of instances present in the input, then progressively make small
changes to Sy and Wy so as to improve the motif’s total LLR.

e There are two well-known, principled strategies for local search: ez-
pectation mazimization and Gibbs sampling. They are guaranteed to
find the best motif in the “neighborhood” of the original guess.



These approaches can yield good (though not necessarily globally op-
timal) answers much faster than enumeration. They are the basis for
well-known programs like MEME and GibbsDNA.

5 Using Homologous Sequences in Motif Finding

Conservation can sometimes provide an additional signal to make motif find-
ing easier.

Because a motif is a functional sequence element, it is subject to evo-
lutionary pressures, in particular conservation against change.

As with any functional feature, we expect that a motif instance will
be more strongly conserved against mutation than the surrounding
sequence (assuming the latter is not itself functional!).

Hence, if we have several homologous sequences, each of which contains
a motif instance at the same location, aligning them should cause the
motif to stand out as better conserved than its surroundings.

Using this approach to locate motifs is called phylogenetic footprinting
— the motif leaves a “footprint” of higher-than-normal conservation in
the alignment.

An example of this approach is the EvoPrinter tool.

The footprinting approach is subject to several challenges.

First, the input sequences must be globally alignable with high con-
fidence; otherwise, errors due to incorrect placement of indels could
result in instances of the motif not being aligned at all!

Second, the motif should appear at the same place in each of the
sequences being aligned. Recall that motifs can arise convergently;
they can also “disappear” from one place in a promoter or enhancer
region and arise independently elsewhere in the same region.

Hence, it’s important to align homologous sequences that diverged on
a time scale shorter than that of motif instance migration.

Third, it must be possible to distinguish the enhanced conservation of
the motif from the background. But the null model for homologous
background sequences is different from that for unrelated sequences.



Hence, we are looking for “somewhat more” (motif) vs. “somewhat
less” (background) conserved regions, which means the signal-to-noise
ratio is reduced.

Assuming we can overcome these issues, how do we evaluate a putative motif
found through footprinting?

Measures of interest are still useful, but they use a weak null hypothesis
(unrelated background sequences) that is not right for footprinting.

Alternatively, estimate a “null” level of conservation from the back-
ground and show that the motif is better conserved than that.

The sophistication of this approach can range from low (estimate the
typical information content of each alignment column in the back-
ground) to high (use a known phylogenetic tree on the sequences to
estimate relative rates of evolution at motif vs. background positions).

At least one tool (Magma) combines traditional motif finding with phyloge-
netic footprinting by searching for motifs that appear in the promoter regions
of multiple genes, such that each instance is conserved in the orthologous
sequences of those regions from multiple species.

6 Practical Computational Motif Finding

Some tools offer p-values or E-values for putative motifs; others do
not. For each tool, know what null model is being tested by the p-
value calculation. Is it strong enough?

Motif finding works best when the search is restricted to a small region,
on the order of a few thousand bases or less, and can survey a large
number of motif-containing sequences (5-20 would be nice).

As the region gets larger and the number of instances smaller, the
desired signal may be drowned out by noise. Algorithms will not find
motifs, and those that are found will receive poor p-values.

You can use footprinting to identify regions of high conservation that
are larger than a single motif (say, tens to hundreds of bases), then
search just these regions using a traditional motif finder for unrelated
sequences. This approach has much higher power than searching long
sequences without first filtering for conservation.



