Common Finishing Errors in GEP Submissions

Projects from the D. grimshawi dot chromosome
By Jeannette Wong

Improper Force Join

- A student’s attempt at a force join fails to consider the high quality discrepant bases between the two consensus sequences.

Digests after Improper Force Join...
- real vs. in silico digest comparison
- red bands > 2% difference in size
- poor matches between the two digests
- does not support assembly, indicates a misassembly

Proper Force Join

- proper force join contains no high quality discrepancies between the consensus sequences

Digests after Proper Joins and Correct Assemblies
- exact match between real and in-silico fragment sizes
- verifies proper force join and assembly of project

Miscalled Insertion/Deletion Sites

- navigator issue in the 21 kb region concerning the number of T’s in the mononucleotide run
- high quality consensus suggests six T’s, some reads suggest only five
 - student tagged this as a insertion/deletion site
Checking the Quality of the Reads...

- 6 T's is low quality
- narrower spacing pattern among 6 T's compared to adjacent nucleotides
- 5 T's is of higher quality and has regular nucleotide spacings
- therefore, mononucleotide run should only contain 5 T's
- not an indel site, but a sequencing artifact

Improper Manual Edits

- student manually edited T-doublet to T-triplet
- a single low quality read justifies T-triplet
- T-triplet spacing is narrower in comparison to adjacent triplet in consensus sequence
- high quality reads support doublet with regular spacing
- ergo, not a T-triplet; student should have comment tagged sequencing artifact from one read

Miscalled Single Nucleotide Polymorphism

- student miscalled high quality discrepancy as possible SNP
- poor quality sequence, not reliable enough to call SNP

Identified Single Nucleotide Polymorphism

- both high quality, same sequence with one nucleotide difference not present anywhere else on fosmid
 - correctly tagged by student