Introduction to *ab initio* and evidence-based gene finding

Wilson Leung 01/2018

Outline

- Overview of computational gene predictions
- Different types of eukaryotic gene predictors
- Common types of gene prediction errors

Computational gene predictions

- Identify genes within genomic sequences
 - Protein-coding genes
 - Non-coding RNA genes
 - Regulatory regions (enhancers, promoters)

- Predictions must be confirmed experimentally
 - Eukaryotic gene predictions have high error rates
 - Two major types of RefSeq records:
 - NM_/NP_ = experimentally confirmed
 - XM_/XP_ = computational predictions

Primary goal of computational gene prediction algorithms

- Label each nucleotide in a genomic sequence
- Identify the most likely sequence of labels (i.e. optimal path)

Sequence: TTTCACACGTAAGTATAGTGTGTGA

Path 1	EEEEEEEEEEEEEEEEEEEEEEEEEE
Path 2	EEEEEEEEEEEEEEEEEEEEEEEEEE
Path 3	EEEEEEEEEEEEEEEEEEEEEEEEEE

Labels Exon (E) 5' Splice Site (S) Intron (I)

Basic properties of gene prediction algorithms

- Model must satisfy biological constraints
 - Coding region must begin with a start codon
 - Initial exon must occur before splice sites and introns
 - Coding region must end with a stop codon

- Model rules using a finite state machine (FSM)
- Use species-specific characteristics to improve the accuracy of gene predictions
 - Distribution of exon and intron sizes
 - Base frequencies (e.g., GC content, codon bias)
 - Protein sequences from the same or closely related species

Prokaryotic gene predictions

- Prokaryotes have relatively simple gene structure
 - Single open reading frame
 - Alternative start codons: AUG, GUG, UUG

- Gene finders can predict most prokaryotic genes accurately (> 90% sensitivity and specificity)
 - Glimmer
Eukaryotic gene predictions have high error rates

- Gene finders generally do a poor job (<50%) predicting genes in eukaryotes
- More variations in the gene models
 - Alternative splicing (multiple isoforms)
 - Non-canonical splice sites (e.g., toy)
 - Non-canonical start codon (e.g., Fmr1)
 - Stop codon read through (e.g., gish)
 - Nested genes (e.g., ko)
 - Trans-splicing (e.g., mod(MGd4))
 - Pseudogenes (e.g., swaPsi)

Types of eukaryotic gene predictors

- Ab initio
 - GENSCAN, geneid, SNAP, GlimmerHMM
- Evidence-based (extrinsic)
 - Augustus, genBlastG, GeMoMa, Exonerate, GenomeScan
- Comparative genomics
 - Twinscan/N-SCAN, SGP2
- Transcriptome-based (RNA-Seq)
 - Cufflinks, StringTie, Trinity, CodingQuarry
- Combine ab initio and evidence-based approaches
 - GLEAN, Gnomon, JIGSAW, EVM, MAKER, IPred

Ab initio gene prediction

- Ab initio = from the beginning
- Predict genes using only the genomic DNA sequence
 - Search for signals of protein coding regions
 - Based on a probabilistic model
 - Hidden Markov Models (HMM)
 - Support Vector Machines (SVM)
- GENSCAN

Hidden Markov Models (HMM)

- A type of supervised machine learning algorithm
 - Uses Bayesian statistics
 - Makes classifications based on characteristics of training data
 - Many types of applications
 - Speech and gesture recognition
 - Bioinformatics
 - Gene predictions
 - Sequence alignments
 - ChIP-seq analysis
 - Protein folding

Supervised machine learning

- Use previous search results to predict search terms and correct spelling errors

GEP curriculum on HMM

- Use a HMM to predict a splice donor site
 - Use Excel to experiment with different emission and transition probabilities
- See the Beyond Annotation section of the GEP web site
 - Also available on CourseSource

GENSCAN HMM Model

- GENSCAN uses the following information to construct gene models:
 - Promoter, splice site and polyadenylation signals
 - Hexamer frequencies and base compositions
 - Probability of coding and non-coding DNA
 - Distribution of gene, exon and intron lengths

Evidence-based gene predictions

- Use sequence alignments to improve predictions
 - EST, cDNA or protein from closely-related species

Exon sensitivity: Percent of real exons identified
Exon specificity: Percent of predicted exons that are correct

Predictions using comparative genomics

- Use whole genome alignments from one or more informant species
- CONTRAST predicts 50% of genes correctly
- Requires high quality whole genome alignments and training data

Flicek P. Gene prediction: compare and CONTRAST. Genome Biology (2007), 8, 233

TopHat junction predictions from spliced RNA-Seq reads

Cufflinks – reference-based transcriptome assembly

- Use TransDecoder to identify coding regions within assembled transcripts

Generate consensus gene models

- Gene predictors have different strengths and weaknesses
- Create consensus gene models by combining results from multiple gene finders and sequence alignments
 - GLEAN
 - GLEAN-R (reconciled) reference gene sets for 11 Drosophila species available at FlyBase

GLEAN-R prediction for the ey ortholog in D. grimshawi

- Single GLEAN-R prediction per genomic location
 - Models have not been confirmed experimentally
 - GLEAN-R RefSeq records have XM_ and XP_ prefixes

Automated annotation pipelines

- NCBI Gnomon gene prediction pipeline
 - Integrate biological evidence into the predicted gene models
 - Examples:
 - Eannot
 - NCBI Gnomon
 - Ensembl
 - UCSC Gene Build
 - EGASP results for the Ensembl pipeline:
 - 71.6% gene sensitivity
 - 67.3% gene specificity

Drosophila Gnomon gene predictions

- Based on RNA-Seq data from either the same or closely-related species
 - Predictions include untranslated regions and multiple isoforms

- Gnomon gene predictions available through FlyBase and the NCBI RefSeq database:
 - https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/

Common problems with gene finders

- Split single gene into multiple predictions
- Fused with neighboring genes
- Missing exons
- Over predict exons or genes
- Missing isoforms

Non-canonical splice donors and acceptors

- Many gene predictors strongly prefer models with canonical splice donor (GT) and acceptor (AG) sites
- Check Gene Record Finder or FlyBase for genes that use non-canonical splice sites in D. melanogaster

Frequency of non-canonical splice sites in FlyBase Release 6.19 (Number of unique introns: 71,671)

<table>
<thead>
<tr>
<th>Donor site</th>
<th>Count</th>
<th>Acceptor site</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>601</td>
<td>AC</td>
<td>34</td>
</tr>
<tr>
<td>AT</td>
<td>30</td>
<td>TG</td>
<td>28</td>
</tr>
<tr>
<td>GA</td>
<td>14</td>
<td>AT</td>
<td>18</td>
</tr>
</tbody>
</table>
Stop codon read through:

Non-canonical start codon:

Trans-spliced gene in *Drosophila*

A special type of RNA processing where exons from two primary transcripts are ligated together

Gene prediction results for the GEP annotation projects

Gene prediction results are available through the GEP UCSC Genome Browser mirror

Under the **Genes and Gene Prediction Tracks** section

Access the predicted peptide sequence:

- Click on the feature, and then click on the **Predicted Protein** link

Original gene predictor output available inside the **Genefinder** folder in the annotation package

The Genscan folder contains a PDF with a graphical schematic of the gene predictions

Summary

- Gene predictors can quickly identify potentially interesting features within a genomic sequence
- The predictions are hypotheses that must be confirmed experimentally
- Eukaryotic gene predictors generally can accurately identify internal exons
- Much lower sensitivity and specificity when predicting complete gene models

Questions?

https://flic.kr/p/6okjA W