Annotating individual variant UTR regions

I. Finding 5’ UTRs (CG11062, activin-beta)
Start as you would for annotating coding exons
1.) plug your gene ID into http://www.ensembl.org/index.html
 à Click on [Exon info]

2.) In the this example we are using contig 5.3 variant A, you will get a screen that will look similar to this:

 à The purple indicates UTR regions. Note that Exon 2 is a hybrid exon, containing part UTR and part coding sequence (in black).

3.) Take the DNA sequence (179 nt) from the first exon and blastn it against the entire De contig5.
4.) Copy your result and paste it into your word document:

Score = 133 bits (69), Expect = 2e-28
Identities = 95/108 (87%), Gaps = 0/108 (0%)
Strand = Plus/Plus

Query 1
AGTTTCACAAAGTATGCAATGTCATTTAGCAACCAACGGAGATACAAAATATTGTTTCCG

Sbjct 31530
AGTCTCACAAAGTATGCAATGTCATTTAGCAACCGACGGAGATACAATATATTGTTTCTA

Query 61
TGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA

Sbjct 31590
TGCTGAAAGAAAAAGCAAAAAACGTGTACAAAACGTGAAAATGTGATA

GK/NY-LMU
The start of exon 1, AGT is found at 31530.

Note that this is only part of the first exon. The blastn query reveals a match up for nt #s 1-108, but the first exon is 179 nts long. This is addressed further down.

Seen below in green is where the last part matches up to in blast.

AGTTTCACAAAGTATGCAATGTCATTTAGCAACCAACGGAGATACAAAATATTGTTTCCGTGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA

Score = 133 bits (69), Expect = 2e-28
Identities = 95/108 (87%), Gaps = 0/108 (0%)
Strand=Plus/Plus

To find the end, extend the D. erecta DNA sequence and compare it in ClustalW. The basic assumption is that the sequence is present for the remainder of the nts in D. erecta. A good start is to the DNA sequence by the missing 71 nts to 31708.

> Dere2 DNA range=contig5:31530-31708 5'pad=0 3'pad=0 revComp=FALSE
strand=? repeatMasking=none

AGTTTCACAAAGTATGCAATGTCATTTAGCAACCAACGGAGATACAAAATATTGTTTCCGTGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA
AAAACAAAGGAGGACCAACGGGAGATACAAAATATTGTTTCCGTGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA

31530-31708
de
AGTTTCACAAAGTATGCAATGTCATTTAGCAACCAACGGAGATACAAAATATTGTTTCCGTGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA
AAAACAAAGGAGGACCAACGGGAGATACAAAATATTGTTTCCGTGCTAAAAGGAAAAGCATAATACATTTATAAATCGTGAAAATGTGATA

GK/NY-LMU
Note the GT splice junction in Dm sequence. There are 28/71 nt matches, not enough of a match for blastn to discover but indicative of some sequence preservation. Note the Dm GT splice junction (in red) is not preserved; an upstream site in De (in green) is hypothesized to end exon 1 at 31695.

The end is found at the end of the match for clustalW

Exon2

5.) Now look for the second exon. Note that this is a hybrid exon, meaning that it contains both UTR and coding sequence.
Since we have already located the coding exon, we need to look for the upstream 180 nts of the non-coding segment of this hybrid exon. Note that beginning of the exon is not discovered by BLASTn.

score = 110 bits (57), Expect = 2e-21
Identities = 91/108 (84%), Gaps = 0/108 (0%)
Strand=Plus/Plus

To find start and end sequences it is sometimes helpful to use the intronic sequences before or after the exon. Sometimes conservation provides a good match.

Search of intronic region: aatcgaaaattttgtatatttggaacag
Score = 39.1 bits (20), Expect = 0.13
Identities = 22/23 (95%), Gaps = 0/23 (0%)
Strand=Plus/Plus

start of Exon2 at 33477 with GCAGATCAAA
Ex2 End at 36590(1), note that this is the end of the coding sequence because this is a hybrid exon containing both UTR and coding sequence.

Ex2: 33476 – 36590(1)

These strategies should be used for each of the UTR regions as well as the leader and end sequences.

II. Finding 3’ UTRs.

1) hybrid exons may be found by extending the De DNA sequence beyond the stop codon using the techniques and guidelines described herein.

2) Non-coding exons may also be discovered as described below.

We will find the 3’UTR for the activin-beta gene. Using blast2seq, search for the Dm sequence in the entire De contig5. Here are the results. Note that blastn discovered nearly all 510 bp.

```
Score = 233 bits (121), Expect = 6e-58
Identities = 162/180 (90%), Gaps = 1/180 (0%)
Strand=Plus/Plus

Query 113 ATATACATAGACATCTACTTATATTTATATATCTTAGCCTATGCTGGTACATATTTGGT 172
Sbjct 38186 ATATAAATAAATATATTTTATATTTTATATTTAGACATGCTGATGACAATATTTGGT 38245

Score = 177 bits (92), Expect = 3e-41
Identities = 166/198 (83%), Gaps = 4/198 (2%)
Strand=Plus/Plus
```

Query 313 TATGTTCATATACTATCTATGAGTTAATTTCATACATGATTTAATAACCTATAACATGAGC 372
Reconstructing the 3 segments:

If we extend the De sequence upstream by 5 nts (38074, includes potential splice site), we have an approximate starting point to initiate a ClustalW analysis to finish the annotation. We recover contig5:38074-38565 from the goose server to initiate the analysis.
Commentary: Note the strong conservation of sequence similarity. The difficulty arises at the upstream part of the 3’UTR. Note that the Dm AG splice site (red) is not preserved but a high confidence AG acceptor site (green) is present at 38063. Therefore, we hypothesize that the De 3’UTR lies at 38065-38565.

III. Handling challenges of finding 5’ and 3’ UTRS.

1) Suppose that the techniques described do not work. Here are some alternative strategies.
 a. Use sequences upstream of the 5’UTR to ‘anchor’ the first exon. They are often highly conserved.
 b. Use sequences downstream of the 3’UTR to anchor the last exon. They are often highly conserved.
 c. Intronic sequences are also sometimes preserved and could serve as a point of departure to find nearby exons. This step, however, should be done if all else fails.

IV. Summary of strategies

1) Since we working with non-coding regions, it is necessary to use the DNA sequences to find non-coding exons. Although more challenging since they will not be as strongly conserved, it should be possible to discover Dm UTRs in the De contig for a conserved gene. It is necessary to do the coding exons first to ensure that the gene model exists.

2) It is problematic sometimes to locate the ends of UTRs. If the splice sites are not easily uncovered, search nearby sequences to find most likely replacement sites.

3) ClustalW analysis is used to extend matches found in Blastn and explore potential end points of a UTR. Again, look for probable splice sites if the Dm sites do not match and extend accordingly.

4) Use upstream and downstream sequences contiguous with the 5’ and 3’ UTRs, respectively to aid in discovering exon boundaries.

Please direct any questions or concerns to:
Dr. Gary Kuleck (gkuleck@lmu.edu) 310-338-7496
or
Nicole Yu (nyu1@lmu.edu)